Title of article :
On stability crossing curves for general systems with two delays
Author/Authors :
Keqin Gu، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
23
From page :
231
To page :
253
Abstract :
For the general linear scalar time-delay systems of arbitrary order with two delays, this article provides a detailed study on the stability crossing curves consisting of all the delays such that the characteristic quasipolynomial has at least one imaginary zero. The crossing set, consisting of all the frequencies corresponding to all the points in the stability crossing curves, are expressed in terms of simple inequality constraints and can be easily identified from the gain response curves of the coefficient transfer functions of the delay terms. This crossing set forms a finite number of intervals of finite length. The corresponding stability crossing curves form a series of smooth curves except at the points corresponding to multiple zeros and a number of other degenerate cases. These curves may be closed curves, open ended curves, and spiral-like curves oriented horizontally, vertically, or diagonally. The category of curves are determined by which constraints are violated at the two ends of the corresponding intervals of the crossing set. The directions in which the zeros cross the imaginaryaxis are explicitly expressed. An algorithm may be devised to calculate the maximum delay deviation without changing the number of right half plane zeros of the characteristic quasipolynomial (and preservation of stability as a special case).  2005 Elsevier Inc. All rights reserved
Keywords :
time delay , Quasipolynomial , stability , Difference-differential equations
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2005
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
934134
Link To Document :
بازگشت