Title of article :
Sobolev’s inequality for Riesz potentials with variable exponent satisfying a log-Hölder condition at infinity
Author/Authors :
Yoshihiro Mizuta، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
21
From page :
268
To page :
288
Abstract :
Our aim in this paper is to deal with the boundedness of maximal functions in generalized Lebesgue spaces Lp(·) when p(·) satisfies a log-Hölder condition at infinity that is weaker than that of Cruz-Uribe, Fiorenza and Neugebauer [D. Cruz-Uribe, A. Fiorenza, C.J. Neugebauer, The maximal function on variable Lp spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003) 223–238; 29 (2004) 247– 249]. Our result extends the recent work of Diening [L. Diening, Maximal functions on generalized Lp(·) spaces, Math. Inequal. Appl. 7 (2004) 245–254] and the authors Futamura and Mizuta [T. Futamura, Y. Mizuta, Sobolev embeddings for Riesz potential space of variable exponent, preprint]. As an application of the boundedness of maximal functions, we show Sobolev’s inequality for Riesz potentials with variable exponent.  2005 Elsevier Inc. All rights reserved.
Keywords :
Riesz potentials , Maximal functions , Sobolev’s embedding theorem of variable exponent
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2005
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
934136
Link To Document :
بازگشت