Title of article :
Maximal operators with rough kernels on product domains
Author/Authors :
Ahmad Al-Salman، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
14
From page :
338
To page :
351
Abstract :
In this paper, we study the Lp boundedness of certain maximal operators on product domains with rough kernels in L(log L). We prove that our operators are bounded on Lp for all 2 p <∞. Moreover, we show that our condition on the kernel is optimal in the sense that the space L(log L) cannot be replaced by L(log L)r for any r < 1. Our results resolve a problem left open in [Y. Ding, A note on a class of rough maximal operators on product domains, J. Math. Anal. Appl. 232 (1999) 222–228].  2005 Elsevier Inc. All rights reserved.
Keywords :
Maximal operators , product domains , Singular integrals , Rough kernels
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2005
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
934140
Link To Document :
بازگشت