Title of article :
A multiplication theorem for the Lerch zeta function and explicit representations of the Bernoulli and Euler polynomials
Author/Authors :
Ching-Hua Chang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Pages :
10
From page :
758
To page :
767
Abstract :
A multiplication theorem for the Lerch zeta function φ(s,a, ξ) is obtained, from which, when evaluating at s =−n for integers n 0, explicit representations for the Bernoulli and Euler polynomials are derived in terms of two arrays of polynomials related to the classical Stirling and Eulerian numbers. As consequences, explicit formulas for some special values of the Bernoulli and Euler polynomials are given.  2005 Elsevier Inc. All rights reserved
Keywords :
Stirling numbers , Central factorialnumbers , Lerch zeta function , Hurwitz zeta function , Eulerian polynomials
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2006
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
934383
Link To Document :
بازگشت