Title of article :
An approximate orthogonal decomposition method for the solution of generalized Liouville equations
Author/Authors :
Eugene Dulov ?، نويسنده , , Alexandre Sinitsyn، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Pages :
15
From page :
77
To page :
91
Abstract :
An analytical–numerical integration method for the generalized Liouville equation ∂ ∂t f (q,p, t) = Lf (q,p, t) is proposed and analyzed. Taking into account a Cauchy condition f (q,p, t)| t=0 = f0(q,p) for the phase space distribution function, we constructed the problem solution as series expansion in time variable t using orthogonal polynomials and Hermite function. Also we proved the corresponding convergence theorems under certain boundedness conditions upon a Liouville operator. © 2005 Elsevier Inc. All rights reserved
Keywords :
Hermite function , Generalized Liouville equation , Hermite polynomial , orthogonal decomposition , Convergence in mean
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2006
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
934509
Link To Document :
بازگشت