Title of article :
An approximate orthogonal decomposition method
for the solution of generalized Liouville equations
Author/Authors :
Eugene Dulov ?، نويسنده , , Alexandre Sinitsyn، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Abstract :
An analytical–numerical integration method for the generalized Liouville equation ∂
∂t f (q,p, t) =
Lf (q,p, t) is proposed and analyzed. Taking into account a Cauchy condition f (q,p, t)|
t=0 =
f0(q,p) for the phase space distribution function, we constructed the problem solution as series
expansion in time variable t using orthogonal polynomials and Hermite function. Also we proved
the corresponding convergence theorems under certain boundedness conditions upon a Liouville
operator.
© 2005 Elsevier Inc. All rights reserved
Keywords :
Hermite function , Generalized Liouville equation , Hermite polynomial , orthogonal decomposition , Convergence in mean
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications