Title of article :
A borderline Gaussian random Fourier series for the sample convergence in variation
Author/Authors :
Mikhail Gordin، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Pages :
26
From page :
526
To page :
551
Abstract :
We give an example of a Gaussian random Fourier series, of which the normalized remainders have their sojourn times converging in variation, namely the convergence in the space L1(R) of the related density distributions, to the Gaussian density. The convergence in the space L∞(R) is also proved. In our approach, we use local times of Gaussian random Fourier series.  2005 Elsevier Inc. All rights reserved.
Keywords :
Gaussian random Fourier series , Sojourn times , Irrational rotations , Sample path properties , Convergence in variation , Central limit theorem , Densities distribution , Local times
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2006
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
934544
Link To Document :
بازگشت