Abstract :
In this paper, we prove that every solution of the first order nonlinear neutral differential equation
x(t) −px(t − τ) + q(t)
m
j=1 x(t −σj )
βj sign x(t −σ1) = 0, t t0,
oscillates if and only if
∞
t0
q(s) exp τ−1 lnp m
j=1
βj −1
s ds=∞,
when ( m
j=1 βj −1) lnp <0, and
∞
t0
q(s) ds=∞,
when ( m
j=1 βj −1) lnp >0, where p, τ >0, βj > 0, σj 0, j = 1, 2, . . . , m, q ∈ C([t0,∞), [0,∞)).
© 2005 Published by Elsevier Inc.
Keywords :
First order neutral differential equation , Superlinear , oscillation , Sublinear