Author/Authors :
Haiyan Zhang، نويسنده , , Hong-Ke Du، نويسنده ,
Abstract :
Let MC = A C
0 B be a 2 × 2 upper triangular operator matrix acting on the Hilbert space H⊕K. In this
paper, for given operators A and B, we prove that
C∈B(K,H)
σb(MC) = C∈B(K,H)
σ(MC) ρb(A) ∩ ρb(B) ,
where ρb(T ) = C \ σb(T ) denotes the Browder resolvent of an operator T and
C∈B(K,H) σ(MC) has
been determined in [H.K. Du, P. Jin, Perturbation of spectrums of 2 × 2 operator matrices, Proc. Amer.
Math. Soc. 121 (1994) 761–776]. Moreover, we explore the relations of σ(A) ∪ σ(B) \ σ(MC), σb(A) ∪
σb(B) \ σb(MC) and σw(A) ∪ σw(B) \ σw(MC), where σ(A), σb(A) and σw(A) denote the spectrum, the
Browder spectrum and the Weyl spectrum of A, respectively.
© 2005 Elsevier Inc. All rights reserved.