Title of article :
Polynomials without repelling periodic point of given period
Author/Authors :
Jianming Chang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Pages :
13
From page :
1
To page :
13
Abstract :
Bergweiler proved that for any given integer k 2, every polynomial P of degree d 2 has at least one repelling periodic cycle of period k unless (k, d) ∈ {(2, 2), (2, 3), (2, 4), (3, 2)}. Here we classified these exceptional polynomials. We also showed that the Julia sets of these exceptional polynomials are connected. © 2005 Elsevier Inc. All rights reserved.
Keywords :
polynomial , Iterate , Periodic point and cycle , Repelling periodic point and cycle , Nonrepellingperiodic point and cycle , fixed point
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2006
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
934974
Link To Document :
بازگشت