Title of article :
Sharp condition of global existence for second-order derivative nonlinear Schrödinger equations in two space dimensions ✩
Author/Authors :
Ji Shu a، نويسنده , , b، نويسنده , , c، نويسنده , , ?، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
6
From page :
1001
To page :
1006
Abstract :
This paper discusses a class of second-order derivative nonlinear Schrödinger equations which are used to describe the upper-hybrid oscillation propagation. By establishing a variational problem, applying the potential well argument and the concavity method, we prove that there exists a sharp condition for global existence and blow-up of the solutions to the nonlinear Schrödinger equation. In addition, we also answer the question: how small are the initial data, the global solutions exist? © 2006 Elsevier Inc. All rights reserved
Keywords :
Nonlinear Schr?dinger equations , global existence , blow-up , Sharp condition , Variational problem
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
935271
Link To Document :
بازگشت