Title of article :
Sharp condition of global existence for second-order
derivative nonlinear Schrödinger equations
in two space dimensions ✩
Author/Authors :
Ji Shu a، نويسنده , , b، نويسنده , , c، نويسنده , , ?، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Abstract :
This paper discusses a class of second-order derivative nonlinear Schrödinger equations which are used
to describe the upper-hybrid oscillation propagation. By establishing a variational problem, applying the
potential well argument and the concavity method, we prove that there exists a sharp condition for global
existence and blow-up of the solutions to the nonlinear Schrödinger equation. In addition, we also answer
the question: how small are the initial data, the global solutions exist?
© 2006 Elsevier Inc. All rights reserved
Keywords :
Nonlinear Schr?dinger equations , global existence , blow-up , Sharp condition , Variational problem
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications