• Title of article

    Sharp condition of global existence for second-order derivative nonlinear Schrödinger equations in two space dimensions ✩

  • Author/Authors

    Ji Shu a، نويسنده , , b، نويسنده , , c، نويسنده , , ?، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2007
  • Pages
    6
  • From page
    1001
  • To page
    1006
  • Abstract
    This paper discusses a class of second-order derivative nonlinear Schrödinger equations which are used to describe the upper-hybrid oscillation propagation. By establishing a variational problem, applying the potential well argument and the concavity method, we prove that there exists a sharp condition for global existence and blow-up of the solutions to the nonlinear Schrödinger equation. In addition, we also answer the question: how small are the initial data, the global solutions exist? © 2006 Elsevier Inc. All rights reserved
  • Keywords
    Nonlinear Schr?dinger equations , global existence , blow-up , Sharp condition , Variational problem
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2007
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    935271