Title of article :
Smooth approximation of Lipschitz functions on Riemannian manifolds
Author/Authors :
D. Azagra، نويسنده , , J. Ferrera، نويسنده , , F. L?pez-Mesas، نويسنده , , Y. Rangel، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
9
From page :
1370
To page :
1378
Abstract :
We show that for every Lipschitz function f defined on a separable Riemannian manifold M (possibly of infinite dimension), for every continuous ε :M →(0,+∞), and for every positive number r > 0, there exists a C∞ smooth Lipschitz function g :M →R such that |f (p) − g(p)| ε(p) for every p ∈ M and Lip(g) Lip(f )+r. Consequently, every separable Riemannian manifold is uniformly bumpable.We also present some applications of this result, such as a general version for separable Riemannian manifolds of Deville–Godefroy–Zizler’s smooth variational principle. © 2006 Elsevier Inc. All rights reserved.
Keywords :
Lipschitz function , Riemannian manifold , Smooth approximation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
935300
Link To Document :
بازگشت