Title of article :
Smooth approximation of Lipschitz functions
on Riemannian manifolds
Author/Authors :
D. Azagra، نويسنده , , J. Ferrera، نويسنده , , F. L?pez-Mesas، نويسنده , , Y. Rangel، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Abstract :
We show that for every Lipschitz function f defined on a separable Riemannian manifold M (possibly
of infinite dimension), for every continuous ε :M →(0,+∞), and for every positive number r > 0, there
exists a C∞ smooth Lipschitz function g :M →R such that |f (p) − g(p)| ε(p) for every p ∈ M and
Lip(g) Lip(f )+r. Consequently, every separable Riemannian manifold is uniformly bumpable.We also
present some applications of this result, such as a general version for separable Riemannian manifolds of
Deville–Godefroy–Zizler’s smooth variational principle.
© 2006 Elsevier Inc. All rights reserved.
Keywords :
Lipschitz function , Riemannian manifold , Smooth approximation
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications