Title of article :
The energy of graphs and matrices
Author/Authors :
Vladimir Nikiforov، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Abstract :
Given a complex m×n matrix A, we index its singular values as σ1(A) σ2(A) ··· and call the value
E(A) = σ1(A) + σ2(A)+··· the energy of A, thereby extending the concept of graph energy, introduced
by Gutman. Let 2 m n, A be an m × n nonnegative matrix with maximum entry α, and A 1 nα.
Extending previous results of Koolen and Moulton for graphs, we prove that
E(A) A 1 √mn + (m− 1) A 22
− A 21
mn α
√n(m+√m)
2
.
Furthermore, if A is any nonconstant matrix, then
E(A) σ1(A)+ A 22
− σ2
1 (A)
σ2(A)
.
Finally, we note that Wigner’s semicircle law implies that
E(G) = 4
3π + o(1) n3/2
for almost all graphs G.
© 2006 Elsevier Inc. All rights reserved
Keywords :
Wigner’s semicircle law , Graph energy , Graph eigenvalues , singular values , Matrix energy
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications