Title of article :
The energy of graphs and matrices
Author/Authors :
Vladimir Nikiforov، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
4
From page :
1472
To page :
1475
Abstract :
Given a complex m×n matrix A, we index its singular values as σ1(A) σ2(A) ··· and call the value E(A) = σ1(A) + σ2(A)+··· the energy of A, thereby extending the concept of graph energy, introduced by Gutman. Let 2 m n, A be an m × n nonnegative matrix with maximum entry α, and A 1 nα. Extending previous results of Koolen and Moulton for graphs, we prove that E(A) A 1 √mn + (m− 1) A 22 − A 21 mn α √n(m+√m) 2 . Furthermore, if A is any nonconstant matrix, then E(A) σ1(A)+ A 22 − σ2 1 (A) σ2(A) . Finally, we note that Wigner’s semicircle law implies that E(G) = 4 3π + o(1) n3/2 for almost all graphs G. © 2006 Elsevier Inc. All rights reserved
Keywords :
Wigner’s semicircle law , Graph energy , Graph eigenvalues , singular values , Matrix energy
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
935311
Link To Document :
بازگشت