Title of article :
On symmetric solutions of a singular elliptic equation
with critical Sobolev–Hardy exponent
Author/Authors :
Yinbin Deng ?، نويسنده , , Lingyu Jin، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Abstract :
This paper is concerned with the existence of the nontrivial solutions of the following problem:
⎧⎪⎨⎪
⎩
− u = μ
u
|x|2 +K(x)
u2∗(s)−1
|x|s
, x∈ Rn,
u ∈ D
1,2
G Rn ,
where n>2, K(x) is a bounded, continuous function satisfying some conditions. D
1,2
G (Rn) is an appropriate
Sobolev space of G-symmetric functions. 2∗(s) = 2(n−s)
(n−2) is the critical Sobolev–Hardy exponent, and
0 s <2, 0<μ<μ¯ = ( n−2
2 )2.
© 2006 Elsevier Inc. All rights reserved.
Keywords :
Palais–Smale condition , G-symmetric solution , Hardy inequality , Critical Sobolev–Hardy exponent , Ellipticequation
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications