Title of article :
On symmetric solutions of a singular elliptic equation with critical Sobolev–Hardy exponent
Author/Authors :
Yinbin Deng ?، نويسنده , , Lingyu Jin، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
14
From page :
603
To page :
616
Abstract :
This paper is concerned with the existence of the nontrivial solutions of the following problem: ⎧⎪⎨⎪ ⎩ − u = μ u |x|2 +K(x) u2∗(s)−1 |x|s , x∈ Rn, u ∈ D 1,2 G Rn , where n>2, K(x) is a bounded, continuous function satisfying some conditions. D 1,2 G (Rn) is an appropriate Sobolev space of G-symmetric functions. 2∗(s) = 2(n−s) (n−2) is the critical Sobolev–Hardy exponent, and 0 s <2, 0<μ<μ¯ = ( n−2 2 )2. © 2006 Elsevier Inc. All rights reserved.
Keywords :
Palais–Smale condition , G-symmetric solution , Hardy inequality , Critical Sobolev–Hardy exponent , Ellipticequation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
935567
Link To Document :
بازگشت