Title of article :
On the minimal periodic solutions of nonconvex superlinear Hamiltonian systems
Author/Authors :
Tianqing An 1، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
12
From page :
1273
To page :
1284
Abstract :
This paper proves a multiplicity result for the minimal periodic solutions of Hamiltonian system ˙x(t) = J∇H(x(t)) under a superquadratic hypothesis on H weaker than the Ambrosetti–Rabinowitz-type condition. We also define a class of homogeneous functions, that are more general than the classical ones, and prove the Rabinowitz’s conjecture in the case of H satisfying such new homogeneity. © 2006 Elsevier Inc. All rights reserved.
Keywords :
Ambrosetti–Rabinowitz-type condition , Hamiltonian system , Homogeneous function , Minimal periodicsolution
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
935620
Link To Document :
بازگشت