Title of article :
On Henstock–Kurzweil and McShane integrals of Banach space-valued functions
Author/Authors :
Guoju Ye 1، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
13
From page :
753
To page :
765
Abstract :
This paper deals with the relation between the McShane integral and the Henstock–Kurzweil integral for the functions mapping a compact interval I0 ⊂ Rm into a Banach space X and some other questions in connection with the McShane integral and the Henstock–Kurzweil integral of Banach space-valued functions. We prove that if a Banach space-valued function f is Henstock–Kurzweil integrable on I0 and satisfies Property (P), then I0 can be written as a countable union of closed sets En such that f is McShane integrable on each En when X contains no copy of c0. We further give an answer to the Karták’s question. © 2006 Elsevier Inc. All rights reserved.
Keywords :
McShane integral , Pettis integral , Henstock–Kurzweil integral
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
935691
Link To Document :
بازگشت