Title of article :
Subharmonic solutions of Hamiltonian systems and the Maslov-type index theory
Author/Authors :
Tianqing An 1، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
11
From page :
701
To page :
711
Abstract :
This paper deals with the subharmonic solutions of Hamiltonian systems ˙x = J∇H(t,x), t ∈ R1, x ∈ R2n. (H) Where H(t,x) = 12 Bˆ(t)x,x + Hˆ (t,x) is T -periodic in t , Bˆ(t) is a T -periodic semipositive symmetric matrix. We prove that for each positive integer k, (H) has a nonconstant kT -periodic solution xk such that xj and xpj are geometrically distinct if p satisfies the certain conditions. © 2006 Elsevier Inc. All rights reserved.
Keywords :
subharmonic solution , critical point , Hamiltonian system , Maslov-type index
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
935791
Link To Document :
بازگشت