Title of article :
Region of variability of two subclasses of univalent
functions
Author/Authors :
S. Ponnusamy†، نويسنده , , A. Vasudevarao، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Abstract :
Let F1 (F2 respectively) denote the class of analytic functions f in the unit disk |z| < 1 with f (0) = 0 = f (0) − 1 satisfying the condition RePf (z) < 3/2 (RePf (z) > −1/2 respectively) in |z| < 1, where
Pf (z) = 1+zf (z)/f (z). For any fixed z0 in the unit disk and λ ∈ [0, 1), we shall determine the region of
variability for log f (z0) when f ranges over the class {f ∈ F1: f (0)=−λ} and {f ∈ F2: f (0) = 3λ},
respectively.
© 2006 Elsevier Inc. All rights reserved
Keywords :
Analytic , close-to-convex , starlike functions , Variability region , Univalent
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications