Title of article :
On some geometric parameters in Banach spaces
Author/Authors :
Ji Gao، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
9
From page :
114
To page :
122
Abstract :
Let X be a normed linear space and S(X) = {x ∈ X: x =1} be the unit sphere of X. Let δ( ) : [0, 2]→ [0, 1], ρX( ) : [0,+∞)→[0,+∞), and J(X) = sup{ x + y ∧ x − y }, x and y ∈ S(X) be the modulus of convexity, the modulus of smoothness, and the modulus of squareness of X, respectively. Let E(X) = sup{ x + y 2 + x − y 2: x,y ∈ S(X)}. In this paper we proved some sufficient conditions on δ( ), ρX( ), J(X), E(X), and w(X) = sup{λ>0: λ ·lim infn→∞ xn +x lim infn→∞ xn −x }, where the supremum is taken over all the weakly null sequence xn in X and all the elements x of X for the uniform normal structure. © 2007 Elsevier Inc. All rights reserved
Keywords :
Uniform normal structure , Ultraproductspace , Modulus of convexity , Modulus of smoothness , Normal structure
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936068
Link To Document :
بازگشت