Abstract :
In this paper we consider the critical singular equation involving the Caffarelli–Kohn–Nirenberg inequalities
of the type
(P1) ⎧⎪
⎪⎨⎪
⎪⎩
−div(|x|−2a∇u) −μ u
|x|2(1+a) = λ|u|q−2u
|x|dD + |u|p−2u
|x|bp , x∈ Ω,
u>0, x∈ Ω,
u = 0, x∈ ∂Ω.
Here Ω is a bounded domain with smooth boundary in RN and contains 0 in its interior, 0 μ <
(√μ¯ − a)2, μ¯ = (N−2
2 )2, N 3, a b < a + 1, a d < a + 1, p = p(a, b) 2N
N−2(1+a−b) , D =
D(a, d) 2N
N−2(1+a−d) , λ is a positive parameter and 2 q
Keywords :
positive solutions , Lusternik–Schnirelmann theory , Caffarelli–Kohn–Nirenberg inequalities
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications