• Title of article

    Vibrations of extensible beams: Unilateral problem

  • Author/Authors

    M.D.G. da Silva ?، نويسنده , , L.A. Medeiros، نويسنده , , A.C. Biazutti، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2007
  • Pages
    15
  • From page
    701
  • To page
    715
  • Abstract
    The present work is dedicated to study a unilateral problem relating to the operator Lu(x, t) = ∂2u ∂t2 − ˆa(t)+ ˆb(t) β(t) α(t) ∂u ∂x 2 dx ∂2u ∂x2 +q ∂4u ∂x4 , which models small transverse deflections u(x, t) of an extensible beam with moving ends. Without restriction on the initial configuration u0 and considering the initial velocity u1 with a bounded gradient, we succeed to prove that, given T an arbitrary positive real number, there exists a unique solution for the unilateral problem defined for all t ∈ [0,T ]. © 2006 Elsevier Inc. All rights reserved
  • Keywords
    Extensible beams , Unilateral problem , Moving hinged ends , Penalty method , Nonlocal solutions
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2007
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    936110