• Title of article

    Global existence and blowup solutions for quasilinear parabolic equations

  • Author/Authors

    Shaohua Chen، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2007
  • Pages
    17
  • From page
    151
  • To page
    167
  • Abstract
    The authors discuss the quasilinear parabolic equation ut = ∇ · (g(u)∇u) + h(u,∇u) + f (u) with u|∂Ω = 0, u(x, 0) = φ(x). If f , g and h are polynomials with proper degrees and proper coefficients, they show that the blowup property only depends on the first eigenvalue of − in Ω with Dirichlet boundary condition. For a special case, they obtain a sharp result. © 2007 Elsevier Inc. All rights reserved
  • Keywords
    Porous medium equation , Quasilinear parabolic equation , global existence , Blowup solutions
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2007
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    936176