Title of article :
Global existence and blowup solutions for quasilinear parabolic equations
Author/Authors :
Shaohua Chen، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
17
From page :
151
To page :
167
Abstract :
The authors discuss the quasilinear parabolic equation ut = ∇ · (g(u)∇u) + h(u,∇u) + f (u) with u|∂Ω = 0, u(x, 0) = φ(x). If f , g and h are polynomials with proper degrees and proper coefficients, they show that the blowup property only depends on the first eigenvalue of − in Ω with Dirichlet boundary condition. For a special case, they obtain a sharp result. © 2007 Elsevier Inc. All rights reserved
Keywords :
Porous medium equation , Quasilinear parabolic equation , global existence , Blowup solutions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936176
Link To Document :
بازگشت