Title of article
Positive solutions for a class of p-Laplacian systems with multiple parameters
Author/Authors
Jaffar Ali، نويسنده , , R. Shivaji ?، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2007
Pages
7
From page
1013
To page
1019
Abstract
Consider the system
− pu = λ1f (v)+ μ1h(u) in Ω,
− qv = λ2g(u)+ μ2γ (v) in Ω,
u = 0 = v on ∂Ω,
where sz = div(|∇z|s−2∇z), s > 1, λ1, λ2, μ1 and μ2 are nonnegative parameters, and Ω is a bounded
domain in RN with smooth boundary ∂Ω. We prove the existence of a large positive solution for λ1 + μ1
and λ2 +μ2 large when
lim
x→∞
f (M[g(x)]1/q−1)
xp−1 = 0
for every M >0, limx→∞
h(x)
xp−1 = 0 and limx→∞
γ (x)
xq−1 = 0. In particular, we do not assume any sign
conditions on f (0), g(0), h(0) or γ (0). We also discuss a multiplicity results when f (0) = g(0) = h(0) =
γ (0) = 0.
© 2007 Elsevier Inc. All rights reserved.
Keywords
positive solutions , p-Laplacian systems , Multiple parameters
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2007
Journal title
Journal of Mathematical Analysis and Applications
Record number
936233
Link To Document