Title of article :
Periodic orbits for a class of reversible quadratic vector field on R3 ✩
Author/Authors :
Claudio A. Buzzi، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
12
From page :
1335
To page :
1346
Abstract :
For a class of reversible quadratic vector fields on R3 we study the periodic orbits that bifurcate from a heteroclinic loop having two singular points at infinity connected by an invariant straight line in the finite part and another straight line at infinity in the local chart U2. More specifically, we prove that for all n ∈ N, there exists εn > 0 such that the reversible quadratic polynomial differential system ˙x = a0 +a1y + a3y2 +a4y2 +ε a2x2 +a3xz , ˙y = b1z +b3yz +εb2xy, ˙z = c1y +c4z2 +εc2xz in R3, with a0 < 0, b1c1 < 0, a2 < 0, b2 < a2, a4 > 0, c2 < a2 and b3 /∈ {c4, 4c4}, for ε ∈ (0, εn) has at least n periodic orbits near the heteroclinic loop. © 2007 Elsevier Inc. All rights reserved
Keywords :
periodic orbits , Quadratic vector fields , reversibility
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936255
Link To Document :
بازگشت