Title of article :
On a generalization of Mittag-Leffler function and its properties
Author/Authors :
A.K. Shukla، نويسنده , , J.C. Prajapati، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
15
From page :
797
To page :
811
Abstract :
Let s and z be complex variables, (s) the Gamma function, and (s)ν = (s+ν) (s) for any complex ν the generalized Pochhammer symbol. The principal aim of the paper is to investigate the function E γ,q α,β (z) = ∞ n=0 (γ )qn (αn+ β) zn n! , where α,β, γ ∈ C; Re(α) > 0, Re(β) > 0, Re(γ ) > 0 and q ∈ (0, 1)∪N. This is a generalization of the exponential function exp(z), the confluent hypergeometric function Φ(γ,α;z), the Mittag-Leffler function Eα(z), the Wiman’s function Eα,β (z) and the function E γ α,β (z) defined by Prabhakar. For the function E γ,q α,β (z) its various properties including usual differentiation and integration, Laplace transforms, Euler (Beta) transforms, Mellin transforms, Whittaker transforms, generalised hypergeometric series form, Mellin–Barnes integral representation with their several special cases are obtained and its relationship with Laguerre polynomials, Fox H-function and Wright hypergeometric function is also established. © 2007 Elsevier Inc. All rights reserved
Keywords :
Confluent hypergeometric function , Euler transform , Fox H-function , Mellin transform , Laplace transform , Mittag-Leffler function , Wright hypergeometric function , Whittaker transform , Wiman’s function
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936304
Link To Document :
بازگشت