Title of article :
On a Dirichlet problem with p(x)-Laplacian
Author/Authors :
Marek Galewski، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
11
From page :
281
To page :
291
Abstract :
We show the existence and stability of solutions for a family of Dirichlet problems −div Vz1 (x,∇u), . . . , VzN (x,∇u) +Lu(x, u) = Fk u (x, u), u ∈W 1,p(x) 0 (Ω) in a bounded domain and with nonconvex nonlinearity satisfying some local growth conditions. The conditions upon V and L allow for considering the p(x)-Laplacian equation. We use the relations between critical points and critical values to the primal and a suitable dual action functional to get the existence, stability and some properties of the solutions. © 2007 Elsevier Inc. All rights reserved
Keywords :
p(x)-Laplacian , Duality , Existence , Variational method , Stability of solutions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936375
Link To Document :
بازگشت