Title of article :
Saturation of convergence for q-Bernstein polynomials in the case q 1
Author/Authors :
Heping Wang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
7
From page :
744
To page :
750
Abstract :
In the note, we discuss Voronovskaya type theorem and saturation of convergence for q-Bernstein polynomials for a function analytic in the disc UR := {z: |z| q) for arbitrary fixed q 1. We give explicit formulas of Voronovskaya type for the q-Bernstein polynomials for q >1. We show that the rate of convergence for the q-Bernstein polynomials is o(q−n) (q >1) for infinite number of points having an accumulation point on UR/q if and only if f is linear. © 2007 Elsevier Inc. All rights reserved.
Keywords :
Saturation , Voronovskaya type formulas , q-Bernstein polynomials
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936413
Link To Document :
بازگشت