Title of article :
Saturation of convergence for q-Bernstein polynomials
in the case q 1
Author/Authors :
Heping Wang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Abstract :
In the note, we discuss Voronovskaya type theorem and saturation of convergence for q-Bernstein polynomials for a function
analytic in the disc UR := {z: |z| q) for arbitrary fixed q 1. We give explicit formulas of Voronovskaya type for the
q-Bernstein polynomials for q >1. We show that the rate of convergence for the q-Bernstein polynomials is o(q−n) (q >1) for
infinite number of points having an accumulation point on UR/q if and only if f is linear.
© 2007 Elsevier Inc. All rights reserved.
Keywords :
Saturation , Voronovskaya type formulas , q-Bernstein polynomials
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications