Title of article :
Operators with rough singular kernels
Author/Authors :
Daning Chen، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Abstract :
For α >0, we study the singular integral operators TΩ,α and the Marcinkiewicz integral operator μΩ,α.
The kernels of these operators behave like |y|−n−α near y = 0, and contain a distribution Ω on the unit
sphere Sn−1. We prove that if Ω ∈ Hr (Sn−1) (r = (n − 1)/(n − 1 + α)) satisfying certain cancellation
condition, then both TΩ,α and μΩ,α can be extend to be the bounded operators from the Sobolev space
L
pα
(Rn) to the Lebesgue space Lp(Rn). The result improves and extends some known results.
© 2007 Elsevier Inc. All rights reserved
Keywords :
Singular integral , Rough kernel , Sobolev spaces , Marcinkiewicz integral operator
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications