Author/Authors :
Fanglei Wang ?، نويسنده , , Yukun An، نويسنده ,
Abstract :
This paper deals with the nonnegative doubly periodic solutions for nonlinear telegraph system
utt − uxx +c1ut + a11(t, x)u+ a12(t, x)v = b1(t, x)f (t, x,u, v),
vtt − vxx +c2vt + a21(t, x)u +a22(t, x)v = b2(t, x)g(t, x,u, v),
where ci > 0 is a constant, a11, a22, b1, b2 ∈ C(R2,R+), a12, a21 ∈ C(R2,R−), f, g ∈ C(R2 × R+ × R+,R+), and aij , bi , f ,
g are 2π-periodic in t and x. We show the existence and multiplicity results when 0 aii (t, x) c2
i4
and f , g are superlinear or
sublinear on (u, v) by using the fixed point theorem in cones.
© 2007 Elsevier Inc. All rights reserved
Keywords :
telegraph system , Cone , fixed point theorem , Doubly periodic solution