Title of article :
On the generalized Hyers–Ulam stability of module left derivations
Author/Authors :
Yong-Soo Jung، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
7
From page :
108
To page :
114
Abstract :
Let A be a unital normed algebra and letMbe a unitary Banach left A-module. If f : A→Mis an approximate module left derivation, then f : A→M is a module left derivation. Moreover, if M= A is a semiprime unital Banach algebra and f (tx) is continuous in t ∈ R for each fixed x in A, then every approximately linear left derivation f : A→A is a linear derivation which maps A into the intersection of its center Z(A) and its Jacobson radical rad(A). In particular, if A is semisimple, then f is identically zero. © 2007 Elsevier Inc. All rights reserved
Keywords :
stability , Module left derivation , Approximate module left derivation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936604
Link To Document :
بازگشت