Title of article :
Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms ✩
Author/Authors :
Dachun Yang ?، نويسنده , , Yuan Zhou، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
14
From page :
622
To page :
635
Abstract :
Let p 1 be near to 1 and X be an RD-space, which includes any Carnot–Carathéodory space with a doubling measure. In this paper, the authors prove that a sublinear operator T extends to a bounded sublinear operator from Hardy spaces Hp(X) to some quasi-Banach space B if and only if T maps all (p, 2)-atoms into uniformly bounded elements of B. © 2007 Elsevier Inc. All rights reserved.
Keywords :
Atom , Hardy space , Calder?n reproducing formula , Sublinear operator , Quasi-Banach space , Space of homogeneous type , RD-space
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936648
Link To Document :
بازگشت