Title of article :
An optimization problem with volume constraint in Orlicz spaces
Author/Authors :
Sandra Mart?nez، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
15
From page :
1407
To page :
1421
Abstract :
We consider the optimization problem of minimizing Ω G(|∇u|)dx in the class of functions W1,G(Ω), with a constraint on the volume of {u>0}. The conditions on the function G allow for a different behavior at 0 and at ∞. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂{u>0} ∩Ω is smooth. © 2007 Elsevier Inc. All rights reserved.
Keywords :
Optimal design problems , free boundaries , Orlicz spaces
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936841
Link To Document :
بازگشت