Title of article :
The evaluation of Bessel functions via exp-arc integrals
Author/Authors :
David Borwein، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
23
From page :
478
To page :
500
Abstract :
A standard method for computing values of Bessel functions has been to use the well-known ascending series for small argument, and to use an asymptotic series for large argument; with the choice of the series changing at some appropriate argument magnitude, depending on the number of digits required. In a recent paper, D. Borwein, J. Borwein, and R. Crandall [D. Borwein, J.M. Borwein, R. Crandall, Effective Laguerre asymptotics, preprint at http://locutus.cs.dal.ca:8088/archive/00000334/] derived a series for an “exp-arc” integral which gave rise to an absolutely convergent series for the J and I Bessel functions with integral order. Such series can be rapidly evaluated via recursion and elementary operations, and provide a viable alternative to the conventional ascendingasymptotic switching. In the present work, we extend the method to deal with Bessel functions of general (non-integral) order, as well as to deal with the Y and K Bessel functions. © 2007 Elsevier Inc. All rights reserved
Keywords :
Bessel function , Uniform series expansion , Exponential-hyperbolic expansions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936887
Link To Document :
بازگشت