Title of article :
Learning gradients by a gradient descent algorithm
Author/Authors :
Xuemei Dong، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Abstract :
We propose a stochastic gradient descent algorithm for learning the gradient of a regression function from random samples of
function values. This is a learning algorithm involving Mercer kernels. By a detailed analysis in reproducing kernel Hilbert spaces,
we provide some error bounds to show that the gradient estimated by the algorithm converges to the true gradient, under some
natural conditions on the regression function and suitable choices of the step size and regularization parameters.
© 2007 Elsevier Inc. All rights reserved
Keywords :
Error analysis , Learning algorithm , stochastic gradient descent , Reproducing kernel Hilbert space , Variable selection
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications