Title of article :
Liouville type theorems for p-harmonic maps
Author/Authors :
Dong Joo Moon، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
7
From page :
354
To page :
360
Abstract :
LetM be a complete Riemannian manifold and let N be a Riemannian manifold of non-positive sectional curvature. Assume that RicM −4(p−1) p2 μ0 at all x ∈M and > −4(p−1) p2 μ0 at some point x0 ∈M, where μ0 > 0 is the least eigenvalue of the Laplacian acting on L2-functions on M. Let 2 q p. Then any q-harmonic map φ :M →N of finite q-energy is constant. Moreover, if N is a Riemannian manifold of non-positive scalar curvature, then any q-harmonic morphism φ :M →N of finite q-energy is constant. © 2007 Elsevier Inc. All rights reserved
Keywords :
p-Harmonic map , p-Harmonic morphism , Liouville type theorem
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936996
Link To Document :
بازگشت