Title of article
On an extension of the Blaschke–Santaló inequality and the hyperplane conjecture
Author/Authors
David Alonso-Gutiérrez 1، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2008
Pages
9
From page
292
To page
300
Abstract
Let K be a symmetric convex body and K
◦ its polar body. Call
φ(K) = 1
|K||K
◦|
K
K
◦
x,y 2 dy dx.
It is conjectured that φ(K) is maximum when K is an ellipsoid. In particular this statement implies the Blaschke–Santaló inequality
and the hyperplane conjecture. We verify this conjecture when K is restricted to be a p-ball.
© 2008 Elsevier Inc. All rights reserved.
Keywords
Hyperplane conjecture , Convex bodies , Asymptotic geometric analysis , Blaschke–Santal?
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2008
Journal title
Journal of Mathematical Analysis and Applications
Record number
937194
Link To Document