Title of article :
On concavity and supermodularity
Author/Authors :
Massimo Marinacci، نويسنده , , Luigi Montrucchio، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
13
From page :
642
To page :
654
Abstract :
Concavity and supermodularity are in general independent properties. A class of functionals defined on a lattice cone of a Riesz space has the Choquet property when it is the case that its members are concave whenever they are supermodular.We show that for some important Riesz spaces both the class of positively homogeneous functionals and the class of translation invariant functionals have the Choquet property. We extend in this way the results of Choquet [G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953–1954) 131–295] and König [H. König, The (sub/super) additivity assertion of Choquet, Studia Math. 157 (2003) 171–197]. © 2008 Elsevier Inc. All rights reserved.
Keywords :
Riesz spaces , Concave functionals , Hyper-Archimedean Riesz spaces , Supermodular functionals , Choquet property
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
937223
Link To Document :
بازگشت