Abstract :
In this paper, we analyze phase separation of multi-component Bose–Einstein condensates
(BECs) in the presence of strong optical lattices. This paper is in threefold. We first prove
that when the inter-component scattering lengths go to infinity, phase separation of a
multi-component BEC occurs. Furthermore, particles repel each other and form segregated
nodal domains. Secondly, we show that the union of these segregated nodal domains equal
to the entire domain. Thirdly, we show that if the intra-component scattering lengths
are bounded by some finite number, each nodal domain is connected. For large intracomponent
scattering lengths, however, the third result is not true and a counter example
of non-connected nodal domains is given