Author/Authors :
G. Criscuolo، نويسنده , , B.M. Dellavecchia، نويسنده , , D.S. Lubinsky، نويسنده , , G. Mastroianni، نويسنده ,
Abstract :
Let W ≔ e−Q, where Q: R → R is even, continuous, and of smooth polynomial growth at infinity. Then we call W2 = e−2Q a Freud weight, the most typical examples being W2β(x) ≔ exp(−|x|β), β > 1. Corresponding to the weight W2, we can form the sequence of orthonormal polynomials {pj(W2, x)}∞j=0. The functions of the second kind areqj(W2, x) ≔ H[pjW2](x) j ≥ 0, where H denotes the Hilbert transform; that is, for g ∈ L, (R), H[g](x) ≔ P.V. ∫∞−∞g(t)/t − xdt. Here P.V. denotes principal value. For a large class of Freud weights, we obtain bounds on {qj}∞j=0 in the L∞, and Lp norms. We also estimate the generalized function of the second kind qj(W2, v, x) ≔ H[pjWv](x), for a fixed function v. We then apply these estimates to investigate the convergence of series of the second kind, which form the basis of Henrici′s method of approximating Cauchy principal value integrals.