Title of article :
Inequalities for a Polynomial and Its Derivative II
Author/Authors :
K.K. Dewan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1995
Pages :
5
From page :
625
To page :
629
Abstract :
A well-known result of Rivlin states that if p(z) is a polynomial of degree n, such that p(z) ≠ 0 in |z| < 1, then max|z|=r < 1 |p(z)| ≤ ((r + 1)/2)n max|z| = 1 |p(z)|. In this paper, we consider the polynomial p(z) = a0 + Σnv = μaυzυ having all its zeros in |z| ≤ k > 1 and obtain a generalization of this result. Our result improves upon a result recently proved by Bidkham and Dewan (J. Math. Anal. Appl.166 (1992), 19-324).
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
1995
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
938533
Link To Document :
بازگشت