Title of article :
An Lp Inequality for a Polynomial and Its Derivative
Author/Authors :
R.B. Gardner، نويسنده , , N.K. Govil، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1995
Pages :
7
From page :
720
To page :
726
Abstract :
Let P(z) = an Πnν=1 (z − zν), an ≠ 0 be a polynomial of degree n. It is known that if |zν| ≥ Kν ≥ 1, 1 ≤ ν ≤ n, then for p ≥ 1,[formula] where [formula] and [formula] This inequality is best possible in the case Kν = 1, 1 ≤ ν ≤ n, and equality holds for the polynomial (z + 1)n. In this paper, we extend the above inequality to values of p ∈ [0, 1) and thus conclude that this inequality in fact holds for all p ≥ 0.
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
1995
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
938755
Link To Document :
بازگشت