Title of article :
Combined non-gray radiative and conductive
heat transfer in solar collector glass cover
Author/Authors :
Maatouk Khoukhi، نويسنده , , *، نويسنده , , Shigenao Maruyama، نويسنده , , Seigo Sakai a، نويسنده , , Masud Behnia، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2003
Abstract :
A rigorous approach for the radiative heat transfer analysis in solar collector glazing is developed. The model allows
a more accurate prediction of thermal performance of a solar collector system. The glass material is analysed as a nongray
plane-parallel medium subjected to solar and thermal irradiations in the one-dimensional case using the Radiation
Element Method by Ray Emission Model (REM by REM).
This method is used to analyse the combined non-gray convective, conductive and radiative heat transfer in glass
medium. The boundary surfaces of the glass are specular. The spectral dependence of the relevant radiation properties
of glass (i.e. specular reflectivity, refraction angle and absorption coefficient) are taken into consideration. Both collimated
and diffuse incident irradiation are applied at the boundary surfaces using the spectral solar model proposed by
Bird and Riordan. The optical constants of a commercial ordinary clear glass material have been used. These optical
constants (100 values) of real and imaginary parts of the complex refractive index of the glass material cover the range
of interest for calculating the solar and thermal radiative heat transfer through the solar collector glass cover. The
model allows the calculation of the steady-state heat flux and temperature distribution within the glass layer. The effect
of both conduction and radiation in the heat transfer process is examined. It has been shown that the real and
imaginary parts of the complex refractive index have a substantial effect on the layer temperature distribution. The
computational time for predicting the combined heat transfer in such a system is very long for the non-gray case with
100 values of n and k. Therefore, a simplified non-gray model with 10 values of n and k and two semi-gray models have
been proposed for rapid computations. A comparison of the proposed models with the reference non-gray case is
presented. The result shows that 10 bandwidths could be used for rapid computation with a very high level of accuracy.
2003 Elsevier Ltd. All rights reserved.
Journal title :
Solar Energy
Journal title :
Solar Energy