• Title of article

    On the selection of shape and orientation of a greenhouse: Thermal modeling and experimental validation

  • Author/Authors

    V.P. Sethi، نويسنده ,

  • Issue Information
    ماهنامه با شماره پیاپی سال 2009
  • Pages
    18
  • From page
    21
  • To page
    38
  • Abstract
    In this study, five most commonly used single span shapes of greenhouses viz. even-span, uneven-span, vinery, modified arch and quonset type have been selected for comparison. The length, width and height (at the center) are kept same for all the selected shapes. A mathematical model for computing transmitted total solar radiation (beam, diffused and ground reflected) at each hour, for each month and at any latitude for the selected geometry greenhouses (through each wall, inclined surfaces and roofs) is developed for both east-west and north-south orientation. Computed transmitted solar radiation is then introduced in a transient thermal model developed to compute hourly inside air temperature for each shape and orientation. Experimental validation of both the models is carried out for the measured total solar radiation and inside air temperature for an east-west orientation, even-span greenhouse (for a typical day in summer) at Ludhiana (31 N and 77 E) Punjab, India. During the experimentation, capsicum crop is grown inside the greenhouse. The predicted and measured values are in close agreement. Results show that uneven-span shape greenhouse receives the maximum and quonset shape receives the minimum solar radiation during each month of the year at all latitudes. East-west orientation is the best suited for year round greenhouse applications at all latitudes as this orientation receives greater total radiation in winter and less in summer except near the equator. Results also show that inside air temperature rise depends upon the shape of the greenhouse and this variation from uneven-span shape to quonset shape is 4.6 C (maximum) and 3.5 C (daily average) at 31 N latitude. 2008 Elsevier Ltd. All rights reserved.
  • Keywords
    Solar energy , Solar radiation , Thermal modeling , Greenhouse shapes , Greenhouse
  • Journal title
    Solar Energy
  • Serial Year
    2009
  • Journal title
    Solar Energy
  • Record number

    940003