Title of article :
Ambient temperature modelling with soft computing techniques
Author/Authors :
Ilaria Bertini a، نويسنده , , Francesco Ceravolo a، نويسنده , , Marco Citterio a، نويسنده , , Matteo De Felice a، نويسنده , , b، نويسنده , , Biagio Di Pietra a، نويسنده , , Francesca Margiotta a، نويسنده , , Stefano Pizzuti a، نويسنده , , *، نويسنده , , Giovanni Puglisi، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Pages :
9
From page :
1264
To page :
1272
Abstract :
This paper proposes a hybrid approach based on soft computing techniques in order to estimate monthly and daily ambient temperature. Indeed, we combine the back-propagation (BP) algorithm and the simple Genetic Algorithm (GA) in order to effectively train artificial neural networks (ANN) in such a way that the BP algorithm initialises a few individuals of the GA’s population. Experiments concerned monthly temperature estimation of unknown places and daily temperature estimation for thermal load computation. Results have shown remarkable improvements in accuracy compared to traditional methods. 2010 Elsevier Ltd. All rights reserved
Keywords :
Soft computing , Temperature modelling , Artificial neural networks
Journal title :
Solar Energy
Serial Year :
2010
Journal title :
Solar Energy
Record number :
940372
Link To Document :
بازگشت