• Title of article

    Modeling and numerical simulation of solar chimney power plants

  • Author/Authors

    Roozbeh Sangi ?، نويسنده , , Majid Amidpour، نويسنده , , Behzad Hosseinizadeh، نويسنده ,

  • Issue Information
    ماهنامه با شماره پیاپی سال 2011
  • Pages
    10
  • From page
    829
  • To page
    838
  • Abstract
    The solar chimney power plant is a simple solar thermal power plant that is capable of converting solar energy into thermal energy in the solar collector. In the second stage, the generated thermal energy is converted into kinetic energy in the chimney and ultimately into electric energy using a combination of a wind turbine and a generator. The purpose of this study is to conduct a more detailed numerical analysis of a solar chimney power plant. A mathematical model based on the Navier–Stokes, continuity and energy equations was developed to describe the solar chimney power plant mechanism in detail. Two different numerical simulations were performed for the geometry of the prototype in Manzanares, Spain. First, the governing equations were solved numerically using an iterative technique. Then, the numerical simulation was performed using the CFD software FLUENT that can simulate a two-dimensional axisymmetric model of a solar chimney power plant with the standard k-epsilon turbulence model. Both the predictions were compared with the available experimental data to assess the validity of the model. The temperature, velocity and pressure distributions in the solar collector are illustrated for three different solar radiations. Reasonably good quantitative agreement was obtained between the experimental data of the Manzanares prototype and both the numerical results. 2011 Elsevier Ltd. All rights reserved
  • Keywords
    Solar chimney power plant , Collector , Chimney , mathematical modeling , Numerical simulation
  • Journal title
    Solar Energy
  • Serial Year
    2011
  • Journal title
    Solar Energy
  • Record number

    940554