Title of article :
Modified anti-Gauss and degree optimal average formulas for Gegenbauer measure Original Research Article
Author/Authors :
A.I. Hascelik، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
9
From page :
171
To page :
179
Abstract :
For the practical estimation of the error of Gauss quadrature rules, Gauss–Kronrod formulas are widely used; but, for the Gegenbauer measure, View the MathML sourcedμC=(1−x2)α−1/2dx, real positive Gauss–Kronrod formulas do not exist for α>3α>3 and n sufficiently large. Among the alternatives which are available in the literature, Gauss–Lobatto and anti-Gauss formulas are of particular interest. In this paper, using the modified anti-Gauss formulas introduced by Ehrich, we determine the degree optimal stratified extensions of Gauss–Gegenbauer formulas, and we investigate their properties.
Journal title :
Applied Numerical Mathematics
Serial Year :
2008
Journal title :
Applied Numerical Mathematics
Record number :
942766
Link To Document :
بازگشت