Title of article :
Structure preserving stochastic integration schemes in interest rate derivative modeling
Original Research Article
Author/Authors :
C. Kahl، نويسنده , , M. Günther، نويسنده , , T. Rossberg، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
In many applications, differential equation models require geometric integration, i.e., the application of structure-preserving integration schemes. In computational finance, for example, the numerical simulation of extended Libor market models used to value structured interest rate derivatives has to preserve positivity or boundedness of the underlying stochastic processes used to model mean-reverting volatility or forward rates. This paper discusses how stochastic integration schemes can be constructed in order to maintain these properties of the analytical solution. Milstein-type methods prove to be the method-of-choice with respect to both efficiency and preservation of structural properties, as they turn out to dominate the increments of Brownian motions. These theoretical results are confirmed by numerical tests.
Journal title :
Applied Numerical Mathematics
Journal title :
Applied Numerical Mathematics