Title of article :
Invariant tori of dissipatively perturbed Hamiltonian systems under symplectic discretization Original Research Article
Author/Authors :
Ernst Hairer، نويسنده , , Christian Lubich، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
15
From page :
57
To page :
71
Abstract :
In a recent paper, Stoffer showed that, under a very weak restriction on the step size, weakly attractive invariant tori of dissipative perturbations of integrable Hamiltonian systems persist under symplectic numerical discretizations. Stofferʹs proof works directly with the discrete scheme. Here, we show how such a result, together with approximation estimates, can be obtained by combining Hamiltonian perturbation theory and backward error analysis of numerical integrators. In addition, we extend Stofferʹs result to dissipative perturbations of non-integrable Hamiltonian systems in the neighborhood of a KAM torus.
Journal title :
Applied Numerical Mathematics
Serial Year :
1999
Journal title :
Applied Numerical Mathematics
Record number :
943025
Link To Document :
بازگشت