Title of article :
Polynomial primal-dual cone affine scaling for semidefinite programming Original Research Article
Author/Authors :
Arjan B. Berkelaar، نويسنده , , Jos F. Sturm، نويسنده , , Shuzhong Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
17
From page :
317
To page :
333
Abstract :
Semidefinite programming concerns the problem of optimizing a linear function over a section of the cone of semidefinite matrices. In the cone affine scaling approach, we replace the cone of semidefinite matrices by a certain inscribed cone, in such a way that the resulting optimization problem is analytically solvable. The now easily obtained solution to this modified problem serves as an approximate solution to the semidefinite programming problem. The inscribed cones that we use are affine transformations of second order cones, hence the name ‘cone affine scaling’. Compared to other primal-dual affine scaling algorithms for semidefinite programming (see de Klerk, Roos and Terlaky (1997)), our algorithm enjoys the lowest computational complexity.
Journal title :
Applied Numerical Mathematics
Serial Year :
1999
Journal title :
Applied Numerical Mathematics
Record number :
943040
Link To Document :
بازگشت