Title of article :
On weighted sums in abelian groups Original Research Article
Author/Authors :
Y.O. Hamidoune، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
6
From page :
127
To page :
132
Abstract :
Let G be an abelian group of order n and Davenport constant d and let k be a natural number. Let x0,x1, …,xm be a sequence of elements of G such that xo has the most repeated value in the sequence. Let {wi; 1 ⩽ i ⩽ k} be a family of integers prime relative to n. We obtain the following two generalizations of the Erdös-Ginzburg-Ziv Theorem. For m ⩾ n + k − 1, we prove that there is a permutation α of [1,m] such that ∑1 ⩽ i ⩽ kwixα(i)=∑1 ⩽ i ⩽ kwix0. For k ⩾ n − 1 and m ⩾ k + d − 1, we prove that there is a k-subset K ⊂ [1, m] such that ∑i ∈ Kxi=kx0.
Journal title :
Discrete Mathematics
Serial Year :
1996
Journal title :
Discrete Mathematics
Record number :
944062
Link To Document :
بازگشت