Title of article :
Graphs without short odd cycles are nearly bipartite
Author/Authors :
Ervin Gy?ri، نويسنده , , Alexandr V Kostochka، نويسنده , , Tomasz ?uczak، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
6
From page :
279
To page :
284
Abstract :
It is proved that for every constant ϵ > 0 and every graph G on n vertices which contains no odd cycles of length smaller than ϵn, G can be made bipartite by removing (15/ϵ)ln(10/ϵ)) vertices. This result is best possible except for a constant factor. Moreover, it is shown that one candestroy all odd cycles in such a graph G also by omitting not more than (200/ϵ2)(ln(10/ϵ))2 edges.
Journal title :
Discrete Mathematics
Serial Year :
1997
Journal title :
Discrete Mathematics
Record number :
944109
Link To Document :
بازگشت